A Gradient Based Adaptive Control Algorithm for Dual-rate Systems
نویسندگان
چکیده
In this paper, using a polynomial transformation technique, we derive a mathematical model for dual-rate systems. Based on this model, we use a stochastic gradient algorithm to estimate unknown parameters directly from the dual-rate input-output data, and then establish an adaptive control algorithm for dual-rate systems. We prove that the parameter estimation error converges to zero under persistent excitation, and the parameter estimation based control algorithm can achieve virtually asymptotically optimal control and ensure the closed-loop systems to be stable and globally convergent. The simulation results are included.
منابع مشابه
Designing stable neural identifier based on Lyapunov method
The stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. This paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability of this algorithm. Also, stable learning algorithm for parameters of ...
متن کاملAdaptive Subcarrier Assignment and Power Distribution in Multiuser OFDM Systems with Proportional Data Rate Requirement
A low complexity dynamic subcarrier and power allocation methodology for downlink communication in an OFDM-based multiuser environment is developed. The problem of maximizing overall capacity with constraints on total power consumption, bit error rate and data rate proportionality among users requiring different QOS specifications is formulated. Assuming perfect knowledge of the instantaneo...
متن کاملADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM
In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...
متن کاملControlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کاملAdaptive Approximation-Based Control for Uncertain Nonlinear Systems With Unknown Dead-Zone Using Minimal Learning Parameter Algorithm
This paper proposes an adaptive approximation-based controller for uncertain strict-feedback nonlinear systems with unknown dead-zone nonlinearity. Dead-zone constraint is represented as a combination of a linear system with a disturbance-like term. This work invokes neural networks (NNs) as a linear-in-parameter approximator to model uncertain nonlinear functions that appear in virtual and act...
متن کامل